Argonne°

NATIONAL LABORATORY

Manifold Sampling for Piecewise Linear
Nonconvex Optimization

Jeffrey Larson, Kamil Khan, Stefan Wild

Argonne National Laboratory

May 25, 2017

@ U5 oEpARTHENT OF

Problem statement

We are interested in solving the problem:
minimize f(x) £ (x) + h(F(x))
X€ERN?

where ¢ : R" = R, F:R” = RP, h: R =+ R,

2 of 32

Problem statement

We are interested in solving the problem:

migei%]nize f(x) £ ¥(x) + h(F(x))

where ¥ : R" - R, F:R" - RP, h: R - R, and

> 1 is smooth with known derivatives

2 of 32

Problem statement

We are interested in solving the problem:

migei%]nize f(x) £ ¥(x) + h(F(x))

where ¥ : R" - R, F:R" - RP, h: R - R, and

» 1) is smooth with known derivatives

» h is nonsmooth, piecewise linear, and has a known structure
(cheap to evaluate)

2 of 32

Problem statement

We are interested in solving the problem:

minimize (x) £ P(x) + h(F(x))

where ¥ : R" - R, F:R" - RP, h: R - R, and

» 1) is smooth with known derivatives

» h is nonsmooth, piecewise linear, and has a known structure
(cheap to evaluate)

» F is smooth, nonlinear, and has a relatively unknown structure
(expensive to evaluate)

2 of 32

Problem statement

We are interested in solving the problem:

minimize f(x) £ ¥(x) + h(F(x))

where ¥ : R" = R, F:R" = RP, h: RP —» R, and

» 1) is smooth with known derivatives

» h is nonsmooth, piecewise linear, and has a known structure
(cheap to evaluate)

» F is smooth, nonlinear, and has a relatively unknown structure
(expensive to evaluate)

Piecewise linear h does not imply h o F is piecewise linear.

Notes

» The manifold sampling framework does not require the availability of
the Jacobian VF.

3 of 32

Notes

» The manifold sampling framework does not require the availability of
the Jacobian VF.

> Applicable both when inexact values for VF(x) are available and in the
derivative-free case, when only F(x) is available.

Notes

» The manifold sampling framework does not require the availability of
the Jacobian VF.

> Applicable both when inexact values for VF(x) are available and in the
derivative-free case, when only F(x) is available.

» We will build component models m"i of each F; around points x. We
can then use VM(x) € R™P where

Piecewise linear functions

Definition
A function h: RP — R is piecewise linear if h is continuous and there

exists a finite collection $§ = {h;:i=1,..., m} of affine functions that
map RP” into R, for which

h(z) € {h(z) : he H}, Vz € RP.

» his a continuous selection of).
» Elements of $) are selection functions of h.
> hi:z€RP— (a;,z) + b; for each /.

°‘,' 4 of 32

Piecewise linear functions

A function h: RP — R is piecewise linear if h is continuous and there
exists a finite collection $§ = {h;:i=1,..., m} of affine functions that
map RP” into R, for which

h(z) € {h(z) : he H}, Vz € RP.

» his a continuous selection of).
» Elements of $) are selection functions of h.
> hi:z€RP— (a;,z) + b; for each /.

Sit{y:hly)=h(y)}, S2d(int(S)), hz)2{i:z€8},

h; for i € I(z) is an essentially active selection function for h at z.

4 of 32

Essentially active

5 of 32

Essentially active

5 of 32

N
Laser pulse propagating in a plasma channel

Determine plasma channel properties that minimize the maximum
difference in the laser intensity.

—‘Configu‘ration 1
— Configuration 2]|

Intensity

10 1‘0 éO 36 4‘0 5;0 60
Time
f(x) = max{Fi(x)} — min{F;(x)}
Ql QZ

6 of 32

Formulation

h(F(x)) = max{sin(2x) + 1, cos(2x), x} — min {sin(2x) + 1, cos(2x), x}

5

451

41

0.5

25

7 of 32

A generalized derivative

The generalized Clarke subdifferential of f at x is defined as
dcf(x) = co ({5 €= lim VF(y/): y/ € D}) ,
y—=x

where co (-) denotes the convex hull.

e 8 of 32

A generalized derivative

The generalized Clarke subdifferential of f at x is defined as
dcf(x) = co ({5 €= lim VF(y/): y/ € D}) ,
y—=x

where co (-) denotes the convex hull.

For our case:
Och(z) =co({a; : i € In(2)})

p— 8 of 32

A generalized derivative

The generalized Clarke subdifferential of f at x is defined as
dcf(x) = co ({5 €= lim VF(y/): y/ € D}) ,
y—=x

where co (-) denotes the convex hull.

For our case:
Och(z) =co({a; : i € In(2)})

Definition

A point x is called a Clarke stationary point of f if 0 € daf(x).

i\ —

e 8 of 32

Algorithm components

> Generator set &*

9 of 32

Algorithm components

> Generator set &*

» Smooth master model m]

9 of 32

Algorithm components

> Generator set &*

» Smooth master model m]

» Trust-region subproblem solution s*

9 of 32

Algorithm components

» Generator set &*

» Smooth master model m]

» Trust-region subproblem solution s*

» Measuring decent with px

9 of 32

Generator set

At some iterate x*,

e 2) {Ve(F) + VM(x)a}
i€lh(F(x¥))

where I,(F(x¥)) is the set of essentially active indices.

10 of 32

Generator set

At some iterate x*,

e 2) {Ve(F) + VM(x)a}
i€lh(F(x¥))

where I,(F(x¥)) is the set of essentially active indices.

Or, given a set of points Y = {x*,y?, ..., yP} C B(x*, Ak)

o 2) | {Ve(F)+VM(x9a}

yeY ieh(F(y))

10 of 32

Generator set

At some iterate x*,

e 2) {Ve(F) + VM(x)a}
i€lh(F(x¥))

where I,(F(x¥)) is the set of essentially active indices.

Or, given a set of points Y = {x*, y?

o 2) | {Ve(F)+VM(x9a}

yeY ieh(F(y))

Assumption

The set &~ satisfies

{VY(x*) + VM(x¥) a; 1 i € In(F(x¥))} € &
& C {VY(x*) + VM(x¥)a; : y € B(x*; Ax) i € IW(F(y))} .

10 of 32

Smooth master model

Our model gradients around iterate x* satisfy
g* £ proj (0, co (6¥)) € co (&),

Let * be the corresponding coefficients so that g = GK*.

11 of 32

Smooth master model

Our model gradients around iterate x* satisfy
g* £ proj (0, co (6¥)) € co (&),

Let * be the corresponding coefficients so that g = GK*.

Define

k & . .
A - ajl'“a‘Jt

and set wX = AK)*. Define the smooth master model m[: R" — R,

P 12
mE(x) £ PR+ wEmPi(x) + > A
i=1 =1

11 of 32

Trust region subproblem

Approximately solve
minimize m{(x* + s)
S

subject to: s € B(0, Ay)

to obtain a solution s satisfying

WO S (M) = W +9),) 2 gk min { s, 1L

Kmh

12 of 32

Measuring descent

» Descent is measured using some selection function h(¥) and not h

13 of 32

Measuring descent

» Descent is measured using some selection function h(¥) and not h

» Must ensure information about h() is in &* before taking a step

13 of 32

Measuring descent

» Descent is measured using some selection function h(¥) and not h

» Must ensure information about h() is in &* before taking a step

» h(k) must satisfy

HO(F()) < hF(H) and ARG+ 54) > h(F (K + 5)),

13 of 32

Measuring descent

» Descent is measured using some selection function h(¥) and not h

» Must ensure information about h() is in &* before taking a step

» hk) must satisfy

NOF() < MF() and WIF(x +59)) > h(F(K +54)),

& YOK) = Pk +55) + hO(F(x)) — hI(F(x +54))

T PR TR — (et sF) + (MI(xK) — M(xF + sk, alk)

13 of 32

Examples of h(K)

T
< T .l - h(K)
[}
F(x) F(x+s)

14 of 32

Examples of h(¥)

3
L
< \~~_
h® 8T
F(x) F(x+s)

14 of 32

Examples of h(K)

14 of 32

Examples of h(K)

F(x) F(x+s)

14 of 32

Algorithm components

Generator set &

v

v

Smooth master model m],

k

v

Trust-region subproblem solution s

v

Measuring decent with o,

15 of 32

Algorithm MS4PL

Choose initial iterate x° and trust-region radius Ag > 1
for k=0,1,2,... do
Build p component models m*i that are fully linear on B(x*, Ay)
Form VM(x*) using VmFi(x¥) and construct &* C R”
Pk < —0
while py = —o0 do
Update component models m’i; build master model m’
if Ay < m||Vm'(x¥)|| (acceptability criterion) then
Approximately solve TRSP to obtain s¥
Evaluate F(x¥ + s¥) and find h(¥)
if (Vp(x¥)+ VM(x¥)alk)) € & then
| Calculate pg
else
| &% « 8% U {Vi(xF) + VM(xK) alk)}
else
| break out of while-loop; iteration is unacceptable

if px > m1 > 0 (successful iteration) then

‘ Xk+1 «— Xk + Skv Ak+1 — min{'yincAkr Amax]’
else

L XKL= x5, Appr ¢ Yaec Ak

17 of 32

Generator set

At some iterate x*,

e 2) {VY(F) + VM(x¥)a}
i€lh(F(x¥))

where I,(F(x¥)) is the set of essentially active indices.

18 of 32

20 of 32

20 of 32

20 of 32

20 of 32

e 20 of 32

e 20 of 32

e 20 of 32

e 20 of 32

20 of 32

e 20 of 32

Generator set

At some iterate x*,

e 2) {VY(F) + VM(x¥)a}
i€lh(F(x¥))

where I,(F(x¥)) is the set of essentially active indices.

Or, given a set of points Y = {x*,y?, ..., yP} C B(x*, Ax)

o 2) | {Vu(F)+VM(x9a}

yeY iel(F(y))

21 of 32

22 of 32

22 of 32

22 of 32

22 of 32

22 of 32

22 of 32

22 of 32

22 of 32

22 of 32

22 of 32

22 of 32

22 of 32

22 of 32

22 of 32

Convergence

» If the trust region radius Ay is a sufficiently small multiple of the master
model gradient ||gk | the iteration is guaranteed to be successful.

23 of 32

Convergence

» If the trust region radius Ay is a sufficiently small multiple of the master
model gradient ||gk | the iteration is guaranteed to be successful.

> limy_00 Ak = 0.

23 of 32

Convergence

» If the trust region radius Ay is a sufficiently small multiple of the master
model gradient ||g¥||, the iteration is guaranteed to be successful.

> limy_00 Ak = 0.

» Some subsequence of master model gradients g* goes zero.

Convergence

» If the trust region radius Ay is a sufficiently small multiple of the master
model gradient ||g¥||, the iteration is guaranteed to be successful.

> |imk*>00 Ak =0.

» Some subsequence of master model gradients g* goes zero.

» Zero is in the generalized Clarke subdifferential of cluster points of any
subsequence of iterates with master model gradients converging to zero.

Convergence

» If the trust region radius Ay is a sufficiently small multiple of the master
model gradient ||g¥||, the iteration is guaranteed to be successful.

> |imk*>00 Ak =0.

» Some subsequence of master model gradients g* goes zero.

» Zero is in the generalized Clarke subdifferential of cluster points of any
subsequence of iterates with master model gradients converging to zero.

» The same holds for cluster points of the sequence of MS4PL iterates.

Test problems

Let h be a censored Z;-loss function. Given data d € RP, censors
¢ € RP, and the mapping F : R" — RP, we define

f(x) = Zp: |di — max {Fi(x). ¢} .

That is, ¢ = 0, and

p

h(y) =Y Idi — max{y;, ¢}|.

i=1

24 of 32

Test problems

Let h be a censored Z;-loss function. Given data d € RP, censors
¢ € RP, and the mapping F : R" — RP, we define

f(x) = z”: |di — max {Fi(x), ¢} .

That is, ¢ = 0, and

p

h(y) = Z |di — max{yi, i}

i=1

Define F to be the 53 vector mapping in the Mére and Wild
benchmarking set. 2 < n <12, 2 < p <45,

Test problems

Fx) =220 [di — max {Fi(x), ¢;}|

Try to define d and c to introduce many points of nondifferentiability.

25 of 32

Test problems

Fx) =220 [di — max {Fi(x), ¢;}|

Try to define d and c to introduce many points of nondifferentiability.

Draw ¢; from U (4;, u;)

¢ = min {F(x°), Fi(x*)} and ui = max { F(x°), Fi(x*)} .

25 of 32

Test problems

f(x) = 2P, |d; — max {Fi(x), ¢}l

Try to define d and c to introduce many points of nondifferentiability.

Draw ¢; from U (4;, u;)

¢ = min {F(x°), Fi(x*)} and ui = max { F(x°), Fi(x*)} .

Make the (crude) assumption that Fi(x) ~ U(¥;, u;), then
max{c;, Fi(x)} ~ (ui — £;) *B(2,1) + ¢;.

Draw d; from this distribution for 2 </ < p.

Test problems

f(x) = 2P, |d; — max {Fi(x), ¢}l

Try to define d and c to introduce many points of nondifferentiability.

Draw ¢; from U (4;, u;)

¢ = min {F(x°), Fi(x*)} and ui = max { F(x°), Fi(x*)} .

Make the (crude) assumption that Fi(x) ~ U(¥;, u;), then
max{c;, Fi(x)} ~ (ui — £;) *B(2,1) + ¢;.

Draw d; from this distribution for 2 </ < p.

Set ¢; = —oc and d; = 0.

Examples

26 of 32

Algorithms to compare

MS4PL-1 Using manifolds at x*

MS4PL-2 Using manifolds in B(x*, Ax)

27 of 32

Algorithms to compare

MS4PL-1 Using manifolds at x*

MS4PL-2 Using manifolds in B(x*, Ax)

PLC POUNDERSs using a single manifold active at x* to form
a master model

27 of 32

Algorithms to compare

MS4PL-1 Using manifolds at x*

MS4PL-2 Using manifolds in B(x*, Ax)

PLC POUNDERSs using a single manifold active at x* to form
a master model

SLQP-GS Gradient sampling algorithm from Curtis

GRANSO BFGS-SQP algorithm Mitchell, Curtis, and Overton.
(Can handle constraints too.)

27 of 32

Gradient sampling

Theorem (Rademacher)

IfS CR" isopen and f : S — R is locally Lipschitz on S, then f is
differentiable almost everywhere on S.

e 28 of 32

-
Gradient sampling
1. Approximate 8f(x*) by sampling m > n+ 1 points x*/ in B(x¥, €x). Set

& = conv {VF(x*1),..., Vi (xm)}

29 of 32

N
Gradient sampling
1. Approximate 8f(x*) by sampling m > n+ 1 points x*/ in B(x¥, €x). Set

& = conv {VF(x*1),..., Vi (xm)}

2. Set £X to be the minimum norm element in &X.

29 of 32

N
Gradient sampling
1. Approximate 8f(x*) by sampling m > n+ 1 points x*/ in B(x¥, €x). Set

& = conv {VF(x*1),..., Vi (xm)}

2. Set £ to be the minimum norm element in &,
3. Set ay to be the smallest power s of v € (0, 1) satisfying

FOxXK+°€) < F(x¥) — By ||€¥]]

29 of 32

Gradient sampling
1. Approximate 8f(x*) by sampling m > n+ 1 points x*/ in B(x*, €x). Set

& = conv {VF(x*1),..., VE(x<m}

2. Set £ to be the minimum norm element in &,

3. Set ay to be the smallest power s of v € (0, 1) satisfying
F(x* +7°%) < F(xF) — Br® ||€¥|

4. 1f VI(xK 4+ apék) exists, x 1 = xk 4 a k.
Else, find a point in & € B(x¥, ¢x) satisfying

XK+ 7€) < F(x¥) — Ba |||

and set x*T1 = &K 4+ o £k,

Gradient sampling
1. Approximate 8f(x*) by sampling m > n+ 1 points x*/ in B(x*, €x). Set

& = conv {VF(x*1),..., VE(x<m}

2. Set £ to be the minimum norm element in &,

3. Set ay to be the smallest power s of v € (0, 1) satisfying
F(x* +7°%) < F(xF) — Br® ||€¥|

4. 1f VI(xK 4+ apék) exists, x 1 = xk 4 a k.
Else, find a point in & € B(x¥, ¢x) satisfying

RN +°€F) < F(xX*) — Bouc || €|
and set x*T1 = &K 4+ o £k,

» lterates must not be points of nondifferentiability

Gradient sampling
1. Approximate 8f(x*) by sampling m > n+ 1 points x*/ in B(x*, €x). Set

& = conv {VF(x*1),..., VE(x<m}

2. Set £ to be the minimum norm element in &,

3. Set ay to be the smallest power s of v € (0, 1) satisfying
F(x* +7°%) < F(xF) — Br® ||€¥|

4. 1f VI(xK 4+ apék) exists, x 1 = xk 4 a k.
Else, find a point in & € B(x¥, ¢x) satisfying

RN +°€F) < F(xX*) — Bouc || €|
and set x*T1 = &K 4+ o £k,

» lterates must not be points of nondifferentiability

» Significant sampling may be required

Tests

f test A method s solves a problem p to a level T after j
function evaluations if

F(x0) = F(x) = (1 = 7)(F(x°) = F,)
x0 is the problem’s starting point, and ?p is the
best-found function value.

a 30 of 32

Tests

f test A method s solves a problem p to a level T after j
function evaluations if

F(x0) = F(x) = (1 = 7)(F(x°) = F,)
x0 is the problem’s starting point, and ?p is the
best-found function value.

Ocf test Sample gradients.

30 of 32

Tests

f test A method s solves a problem p to a level T after j
function evaluations if

F(x0) = F(x) = (1 = 7)(F(x°) = F,)
x° is the problem’s starting point, and ?p is the
best-found function value.

Ocf test Sample gradients.

Draw 30 points uniformly from B(x/, 10~8) for each point
x/ evaluated by each method.

Tests

f test A method s solves a problem p to a level T after j
function evaluations if

F(x0) = F(x) = (1 = 7)(F(x°) = F,)
x° is the problem’s starting point, and ?p is the
best-found function value.

Ocf test Sample gradients.

Draw 30 points uniformly from B(x/, 10~8) for each point
x/ evaluated by each method.

s solves p to a level T after j function evaluations if
|11 < 7 [|&°]

Data profiles
f-test, 7 = 1072

o
)
T

o
'S
T

EEEEERY SERETEEYE CEETEEY CEEETEY |

Fraction of problems
o [=]
w (6,

—8— MS4PL—1
0.2 =@~ MS4PL-2 |
-A-PLC
0.1 —¥— SLQP-GS[|
GRANSO

100 200 /300 400
Function evaluations divided by (np+1)

500

31 of 32

Data profiles
f-test, 7 = 107>

o
o
T

Fraction of problems
o o o o
n w s (6,

o
-

500

100 200 /300 400
Function evaluations divided by (np+1)

31 of 32

Data profiles
Ocf-test, T = 1073

o
o
:

o
'S
T

Fraction of problems
o o
w (6,

—8— MS4PL-1
0.2, =0= MS4PL-2 |
-A-PLC
0.1 —¥— SLQP-GS]]|
GRANSO

100 200 /300 400 500
Function evaluations divided by (np+1)

a 31 of 32

Data profiles
Ocf-test, T = 1078

o
©
:

o°
3
:

o
o
T

Fraction of problems
o o
R [6;]

o
w
:

o
)
T

o
-

100 200 /300 400
Function evaluations divided by (np+1)

500

6 31 of 32

Conclusions

When optimizing functions of the form h(F(x)) when
> his “easy”
» F is “hard”

it can be advantageous to model F; and then combine those models via
known information about h.

Conclusions

When optimizing functions of the form h(F(x)) when
> his “easy”
> Fis “hard”

it can be advantageous to model F; and then combine those models via
known information about h.

Email jmlarson®@anl.gov for a preprint.

Thank you!

